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We have proposed a hybrid Fuzzy Cognitive Map-based model that incorporates static expert knowledge and
information automatically inferred from the data. The paper introduces a fast and deterministic algorithm to
construct such a model and a post-optimization procedure to fine-tune the resulting architecture. Simulations
showed the superiority of our proposal in problems devoted to modeling complex systems.

Contribution overview

Fuzzy Cognitive Maps (FCMs) belong to the family
of cognitive semantic models. They are represented as
directed weighted graphs in which vertices are concepts
(knowledge granules) and arcs correspond to relations
between them. FCMs are used to visualize, model, and
simulate the behavior of systems.

In our new paper [1] the focus is on an FCM-based
model for simulating dynamic systems. In such a sys-
tem, we often have several input variables that influ-
ence the values of the output variables. In this paper,
a new hybrid approach for designing FCMs simulat-
ing such a system is presented. The proposed approach
combines the ability to integrate expert knowledge into
the map architecture with elements of automatic model
learning from historical data. In practice, in the pro-
posed model we can incorporate information about the
weights between input variables given by experts, and
the remaining weights are learned automatically. The
use of the term “hybrid” refers in our case to the possi-
bility of integrating expert knowledge about input vari-
ables into a model whose other parts are learned from
the data. The specific research goals and our novel con-
tributions can be summarized as follows:

� We developed a new method for constructing cog-
nitive maps, in which we incorporate both static
expert knowledge and knowledge extracted from
the data in the learning procedure.

� We introduced a new very fast, deterministic way
of learning model weights.

� We introduced a post-optimization approach for
eliminating irrelevant weights and correcting the
model to preserve the accuracy.

The new method

Figure 1 shows the proposed architecture with three
inputs (x1, x2, x3) and three outputs (y1, y2, y3).
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Figure 1: FCM-based model with three input neurons
(c1, c2, c3) and three output neurons (d1, d2, d3).

The reasoning process is given in below,
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where P is the number of nodes in the network, k is
the input activation vector index, wji is the weight con-
necting cj with ci, and fi(·) is the transfer function. We
adopted a simplified variant of the sigmoid function,
which is depicted below,

fi(x) = li +
ui − li

(1 + e−λi(x−hi))
(2)

such that λi > 0 and hi ∈ R are parameters that define
the shape of the sigmoid function.

The initial activation values a(0)1 , a(0)2 and a
(0)
3 for

input neurons correspond to the problem variables x1,
x2 and x3, respectively. Let us use N to note the num-
ber of input neurons C = {c1, . . . , cN} and M to note
the number of output neurons D = {d1, . . . , dM}. The
weight matrix W is composed of two sub-matrices W I

and WO. The first one contains the connections among
the input neurons. W I should ideally be defined by do-
main experts and it will not be modified during the
learning phase. Sub-matrix WO contains the weights
between the input and the output nodes. This matrix
will be learned automatically.
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The inverse learning method

In the paper, we developed a learning method to com-
pute WO, the sub-matrix that contains the weights be-
tween the input and the output nodes.

Assume that [X,Y ] is a training dataset where X =
[xij ], i = 1, . . . ,K, j = 1, . . . , N . K is the number of
input instances, each instance is described with N in-
put variables, xij ∈ [0, 1]. Y = [yij ], i = 1, . . . ,K, j =
1, . . . ,M is a matrix containing the true values of the
M output variables for each one of the K instances.

The first step toward computing the WO matrix is
to capture the system semantics with the use of input
and the weight matrix W I . Thus, let Ψ(T )(X) denote
an N ×K matrix after performing T iterations of the
FCM inference process on the input matrix X, that is
Ψ(T )(X) = [a(T )ij ], i = 1, . . . ,K, j = 1, . . . , N .

The second learning step computes WO by using the
proposed pseudoinverse learning rule,

WO =
(
Ψ(T )(X)

)‡
F−
(
Y
)

(3)

where (·)‡ represents the Moore-Penrose (MP) inverse
of a given matrix, and

F−
(
Y
)

=
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f−1 (yk1)
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is a K×M matrix containing the inverse of the transfer
functions attached to output neurons:

f−1i (y) =
− ln (−1− y) + hiλi

λi
. (4)

We use an orthogonal projection to obtain the MP
inverse. If a matrixH has linearly independent columns
(H>H is nonsingular), then H‡ = (H>H)−H>. In
contrast, if H has linearly independent rows (HH> is
nonsingular), then H‡ = H>(H>H)−. The former is
a left inverse because H‡H = I, while the latter is
a right inverse because HH‡ = I.

To overcome the issue of weights that lie outside
of the desired [−1, 1] interval, in the paper, we pro-
posed a post-training weight normalization method to
ensure that wji ∈ [−1, 1]. What is more, we proposed a
method for superfluous weights elimination. After this
step, the procedure provides the means for calibrating
the weights to be retained.

Numerical simulations

In the paper, we have conducted several simulations us-
ing 35 datasets. We compared the efficiency of the new
method with well-known population-based optimizers:

Global-best Particle Swarm Optimization, Real-Coded
Genetic Algorithm, and Differential Evolution. Figure
2 shows the box-plots associated with Mean Squared
Error (MSE) for each optimization model after being
tested on datasets used for comparison. The results
confirmed that the MP inverse learning method is out-
performs the remaining optimization approaches when
it comes to the prediction error.
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Figure 2: MSE reported by each optimization model
across the 35 datasets used for simulation.

The training time of the proposed MP learning rule is
significantly smaller when compared with the ones at-
tached to state-of-the-art population-based optimizers.
The average processing time of tested algorithms was
as follows: Particle Swarm Optimization 4.951s, Real-
Coded Genetic Algorithm 5.509s, Differential Evolu-
tion 12.964s. The new method took on average 0.003s.

Concluding remarks

The new method based on the Moore-Penrose pseu-
doinverse is fast and deterministic. Both those qual-
ities are rarely seen together in the domain of FCM
learning. The numerical simulations have shown that
our system is able to significantly outperform state-of-
the-art population-based algorithms in terms of both
simulation error and training time.
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