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We proposed definitions and theorems regarding Fuzzy Cognitive Maps (FCMs), which allow estimating bounds
for the activation value of each neuron and analyzing the covering and proximity of feasible activation spaces.
The main theoretical findings suggest that the state space of any FCM model equipped with transfer F-
functions shrinks infinitely with no guarantee for the FCM to converge to a fized point but to its limit state

space.

This result, in conjunction with the covering and proximity values of FCM-based models, helps to

understand their poor performance when solving complex simulation problems.

Introduction

Fuzzy Cognitive Maps (FCMs) [I] are recurrent neu-
ral networks for modeling complex systems. Existing
theoretical studies on FCMs are mainly devoted to con-
vergence issues, commonly covering the existence and
uniqueness of fixed points [2,[3]. Other results reported
in [4, /51 [6] address the convergence of FCM models used
in prediction/classification scenarios.

Concerning the theoretical analysis of FCMs’ dy-
namics, we summarize our paper Unwveiling the Dy-
namic Behavior of Fuzzy Cognitive Maps [7]. First,
we introduce several definitions and theorems that al-
low studying the dynamic behavior of FCMs equipped
with monotonically increasing functions bounded into
non-negative intervals. The strong version of our the-
orem proves that the state space of an FCM shrinks
infinitely and converges to a so-called limit state space.
This allows envisaging the FCM model’s behavior be-
fore the inference stage. As a second contribution, we
explore the covering and proximity of feasible activa-
tion spaces, which help explain why FCMs sometimes
perform poorly when solving complex prediction prob-
lems. In other words, we should not expect impressive
prediction rates when the model has low covering val-
ues, as the FCM feasible state space is small.

Shrink Functions and State Space Estimation in
FCM-based Models

We define F' as the set of all monotonically increasing
functions bounded into non-negative intervals. Also,
let f; € F be the transfer function used in the activa-
tion process of neuron C; in the FCM. In [7], we refer
to an F-function as any function belonging to F'.

Let Hyw and Hr be functions that take an FCM-
based model M and a feasible state space at the ¢-th
iteration S® for this map and return a feasible state
space at the (t41)-th iteration S¢*+1) for the same map.
While Hyy uses the weight matrix W of M to calculate
a feasible state space for the (¢t + 1)-th iteration, Hrp
uses the FCM’s topology only. Based upon estimated

bounds for the successive activation values and from
the monotonically increasing property of f; € F, we
assert that over the same FCM, these two shrink func-
tions transform feasible state spaces into state spaces
which are also feasible.

To show that FCMs are not completely unpre-
dictable, we propose two theorems as the pillars of
our state-space estimation: the Weak Shrinking State
Space and the Strong Shrinking State Space. The for-
mer asserts that the state spaces shrink from one itera-
tion to the next one, although it is possible that S®) =
St which would imply that S® = St+%) vk € N.
So, the state spaces may not shrink forever. The latter
only varies in the sense that transfer functions are now
bounded into open intervals. This means that the state
space bounds are never reachable and hence, the state
spaces will shrink forever and they will have a limit.
The limit state space of M is 8 = lim;_, . S®,
when state spaces are iteratively calculated using either
shrink function Hp or Hy . According to simulations,
S(°) often contains a single point.

Covering and Proximity of FCM Models

In this section, we discuss two evaluation measures that
help understand the properties of FCM-based systems.
The covering quantifies the proportion of the induced
activation space that is reachable by the neuron’s ac-
tivation values and the prorimity measures the mean
relative distance of neuron’s activation values to the
feasible activation spaces.

Small covering values are evidence of the reduced
representativeness of induced activation space, but
sometimes we desire high covering values to represent
the most diverse sets of outputs. As illustrated, such
measures have a straightforward connection with the
Strong Shrinking State Space Theorem. More impor-
tantly, they help explain why FCMs sometimes per-
form poorly when applied to prediction problems that
demand high accuracy.
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Experimental Scenarios

For experimentation purposes, we generated 400 FCM-
based models (200 stable and 200 unstable) with varied
properties according to the number of neurons (5 to
30), weights ([—1, 1] interval) and connectivity or per-
centage of relationships (10%, 20%, ..., 100%). The
simulations reported more valuable results in the pres-
ence of stable FCM models and when the knowledge
comprised into the weight set is available. Therefore,
Figures [I] 2] and [3] correspond to this situation.

Figure[I] depicts the covering values resulting for this
scenario. Higher connectivity values and higher num-
ber of map neurons have a considerable influence on
attaining higher covering values.
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Figure 1: Axes X, Y and Z respectively refer to the
number of neurons, connectivity and covering values.

A zero covering value is a computational evidence
of fixed-point attractors for every one of these FCM
models. According to Figure[2] at least 81 FCM model
will always converge to a fixed-point attractor regard-
less of the initial stimulus. Moreover, in Figure [3| we
can observe that nearly half of the proximity values are
exactly zero and then, almost surely, 90 FCM models
converge to a fixed-point attractor.
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Figure 2: Distribution of covering values.
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Figure 3: Distribution of proximity values.

Concluding Remarks

Our research in [7] goes a step beyond the study of
fixed-point attractors, since we analyze the dynami-
cal behavior of FCM-based models from the perspec-
tive of their state spaces. The Strong Shrinking State
Space Theorem enunciated in this paper ensures that
the feasible state space of the targeted FCMs shrinks
infinitely, yet the system converges to its limit state
space. As shown in the experiments, approximating an
FCM’s limit state space is useful to predict fixed-point
attractors. Likewise, we illustrated that the covering of
feasible activation spaces is often poor and irregular for
FCMs with reduced network topologies. This knowl-
edge could be injected into the learning procedure in
order to improve network’s performance.
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