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Bidirectional Pooling for Deep Neural Networks
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2Faculty of Business Economics, Universiteit Hasselt, Belgium
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This work introduces a new neural network architecture that uses bidirectional associations-based pooling to
extract high-level features and labels from multi-label data. Unlike the pooling approaches reported in the
literature, our proposal does not require input data to have any topological properties as typically occurs with
images and videos. The numerical results show that our bidirectional pooling helps reduce the number of
problem features and labels while preserving the discriminatory power of the network.

Introduction

Pooling layers [1] help reduce redundancy and the
number of parameters before building a multilayer (or
recurrent) neural network that performs the remain-
ing operations. Although these operators are able to
deal with both single-label and multi-label classifica-
tion problems (MLC) [2, 3], they are specifically aimed
at reducing feature space. In the case of multi-label
data, this should also be done in the label space. De-
spite their success, existing pooling operators [4] are
focused on data with a well-defined structure (such as
image and video) where the term feature neighborhood
makes sense. However, while it is interesting to rec-
ognize faces or classify objects in images and videos,
the truth is that there are other domains in which the
data do not have a topological organization. In those
cases, using standard pooling operators might have lit-
tle sense, even when the problem at hand could benefit
significantly from a deep learning solution.

The proposed network architecture

In [5], we proposed a bidirectional network composed
of stacked association-based pooling layers to extract
high-level features and labels in MLC problems with
no specific topological organization. Unlike the classic
use of pooling, this approach does not perform pool-
ing over pixels but problem features or labels. The
first pooling layer is composed of neurons denoting the
problem features and labels (i.e., low-level features and
labels). In contrast, neurons denote high-level features
and labels extracted during the construction process
in deeper pooling layers. Each pooling layer uses a
function that detects pairs of highly associated neurons
while performing an aggregation operation to derive
the pooled neurons. Such neurons are obtained from
neurons belonging to the previous layer to fulfill a cer-
tain association threshold. This model uses Pearson’s
correlation to estimate the association degree between
two neurons. Overall, we compute the correlation ma-
trix among features and labels and derive the degree of
association of the pooled neurons from the degree of as-
sociation between each pair of neurons in the previous
layer. The pooling process is repeated over aggregated

features and labels until a maximum number of pooling
layers is reached.

Once the high-level features and labels have been ex-
tracted using the pooling operators, they are connected
with one or several hidden processing layers. Finally, a
decoding process [6] is performed to connect the high-
level labels to the original ones by means of one or more
hidden processing layers. Figure 1 depicts an example
of this network architecture resulting in five high-level
neurons that emerge from the association-based pool-
ing layers. Hidden neurons in these hidden layers are
equipped with can use any transfer function such as
ReLU, sigmoid or hyperbolic tangent.

Numerical simulations

The performance of our model is evaluated using sev-
eral MLC problems. Overall, we study how the model
performs in terms of accuracy and number of features
and high-level labels. Table 1 reports the number of
high-level features (#HLF), feature reduction percent-
age (%Red-F), the number of high-level labels (#HLL),
label reduction percentage (%Red-L), the accuracy ob-
tained by the network using the extracted features and
labels, the accuracy using the original features and la-
bels (baseline model), and the loss of accuracy with
respect to the baseline model.

Table 1: Performance assessment of the bidirectional
association-based pooling approach.

Dataset #HLF %Red-F #HLL %Red-L Accuracy Baseline Loss
D1 43 40.28% 6 0% 0.815 0.823 -0.008
D2 24 91.84% 6 0% 0.913 0.915 -0.002
D3 44 57.28% 13 7.14% 0.798 0.80 -0.002
D4 17 96.85% 22 87.43% 0.988 0.987 0.001
D5 19 96.75% 29 87.22% 0.99 0.99 0
D6 19 96.71% 50 87.5% 0.995 0.995 0
D7 20 96.85% 35 87.23% 0.991 0.991 0
D8 14 96.82% 8 0% 0.915 0.918 -0.003
D9 53 87.95% 4 0% 0.837 0.866 -0.029
D10 49 88.86% 5 16.67% 0.805 0.794 0.011
D11 4 96.67% 7 93.07% 0.965 0.965 0
D12 78 96.37% 10 95.19% 0.99 0.99 0
D13 80 92.01% 14 50% 0.928 0.988 -0.06
D14 18 96.4% 3 96.3% 0.977 0.977 0
D15 9 92.97% 3 96.3% 0.977 0.977 0

From these results, we can observe that our proposal
significantly reduces the number of features and labels
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Figure 1: Neural network architecture involving three high-level features (resulting from the feature pooling step),
two-high-level labels (resulting from the label feature step), four low-level labels and four hidden layers.

with a percentage reduction up to 96% and 87%, re-
spectively. It is worth mentioning that the bidirec-
tional association-based pooling reports a maximal ac-
curacy loss of 0.06 for the D13 dataset. However, in
some cases, we observed a small increase in the accu-
racy (e.g., dataset D10) even when our network was
not conceived to increase the prediction rates but to
obtain the same performance with smaller networks.
Our proposal has no loss in accuracy for those prob-
lems having low variability in accuracy (i.e., datasets
D5 −D7, D11 −D12, D14 −D15).

Conclusions

The numerical simulations have shown that our pro-
posal is able to significantly reduce the number of pa-
rameters in deep feed-forward neural networks with-
out harming their discriminatory power. Extracting
high-level features and labels increases the possibility
of building networks with more transparent inference
models. For example, by using post-hoc interpretability
techniques, we could shed light on the inner reasoning
of the model when operating with high-level features.
These techniques regularly have exponential algorith-
mic complexity, thus having networks with fewer pa-
rameters certainly helps reach this goal.

Notes

a. Email: mbgarcia@uclv.cu
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Dual phase magnetic functionalization of multicomponent alloys
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This work focuses on the collaborative behavior of strong ferromagnetic FeCr nanoparticles embedded in a
AlNiCo weak magnetic matrix.

“The whole is greater than the sum of the parts.”
The quote reflects on the mathematical observation, of
the original phrase attributed to Ἀριστοτέλης, that, in
a broader and more modern Systems Engineering lan-
guage, can be rephrased as “The System is something
beside, and not the same as, its elements.” [1].

Illustrations of both readings can be found in modern
applied sciences. For example, the intensity resulting
from the interference of two beams of equal intensity
can go from none to up to four times the brightness of
the individual beam. Another example: ferromagnetic
Heusler alloys are made of non-ferromagnetic elements
such as Manganese, Nickel and Tin [2].

In this contribution, we investigate the increased
magnetization of NiCoFeCrAlx multicomponent alloy
by means of its FeCr-NiCoAlx dual phase functional-
ization.

For this study, bulk samples of stoichiometric com-
position Ni0.5CoFeCr0.5-Alx (named Al0.0, Al1.0 and
Al1.5 for x = 0.0, 1.0 and 1.5, respectively) were arc-
melted at least three times before being heat-treated
at 1423 K for 10 h in Argon atmosphere [3, 4].

Figure 1 shows the magnetization vs. temperature
measurements for applied fields of 25 mT (a) and 1.0 T
(b). Notice the evolution from a single characteris-
tic Curie Temperature (TC) for the Al0.0 sample, to
a double-magnetic transition with Al addition. The
split of the magnetic transition is found to be concomi-
tant to the transition from a single FCC (Al0.0) tran-
sition into a dual BCC/B2 phase (Al1.0 and Al1.5) [3].
Also notice the formation and segregation of FeCr-
nanoparticles (NPs) within an AlNiCo-rich matrix with
Al addition (Figure 2a, 2b and 2c). The two dis-
tinctive values of TC for the fully segregated Al1.0
and Al1.5 samples correspond to TC

FeCr > 850 K and
TC

AlNiCo < 700 K, respectively [3].
FeCr-NPs were found to make the greatest contri-

bution to the total magnetisation in the Al1.0 and
Al1.5 samples. However, the jump in magnetisation
occurring at TC

AlNiCo is approx. 5 times larger than
the magnetisation change observed at TC

FeCr. (The
result can seem counterintuitive at first sight.) In
turn, the saturation magnetisation (Ms) at 300 K and
1.0 T is 100 Am2kg−1 and 70 Am2kg−1 for samples
Al1.0 and Al1.5, respectively, which is higher than the
62 Am2kg−1 measured for sample Al0.0 at its satura-
tion (T = 50 K) and only 20 Am2kg−1 at 300 K (Fig-
ure 1).

Figure 1: Shows the FC-FH path of direct M(T) mea-
surements curves (solid symbols) and the indirect mag-
netization dependence on temperature (MT) curve ob-
tained from isothermal measurements of the virgin
loop in a decreasing temperature path (open symbols)
for samples Al0.0 (red), Al1.0 (black) and Al1.5 (blue)
at applied fields of 25 mT (a), and 1.0 T (b).

Thus, with the addition of the paramagnetic Al, the
magnetic properties of the Al0.0 sample are consider-
ably enhanced, enlarging the FM region (i.e. shifting
TC for more than 170 K towards higher temperatures)
and increasing Ms by 61% and 16% for Al1.0 and Al1.5,
respectively.

Figure 2: SEM (a, b, and c) and MFM (d, e, and f)
image of Al0.0 (a and d), Al1.0 (b and e), and AL1.5
(c and f) at different magnification.

In order to explain the findings, a phenomenological
approach was used where the collaborative interaction
amongst NPs was taken into account. The following
conclusions were reached:

1. FM-NPs of FeCr rich phase forms at TC
FeCr.

2. As the temperature decreases, with the decrease
of the thermal energy in the region LTT < T <
HTT , dipolar interaction among NPs is favoured
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for particles of larger size (i.e. Al1.0 sample). Un-
favoured NPs’ interaction in the Al1.5 sample
show an SPM-like collective behaviour where NPs
are weakly linked to their neighbours.

3. As the sample reaches TC
AlNiCo, the matrix be-

comes FM and provides the conditions to form
the exchange-bridge that will enhance the FM-
NPs interaction. As a consequence, already strong
linked NPs of the Al1.0 sample increase the FM-
like short-range interactions, which, in turn, in-
creases the long-term dipolar repulsion that forms
a highly fragmented AFM-like domain structure to
minimise the energy of the system (Figure 2e). On
the other hand, the smaller NPs of the Al1.5 sam-
ple are weakly ferromagnetically aligned, which,
in turn, decreases the long-range dipolar repul-
sion interactions and allows for a wider stripes
labyrinth domain structure to form (Figure 2f).

Notes

a. Email: ris.quintana-nedelcos@nmite.ac.uk
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We proposed definitions and theorems regarding Fuzzy Cognitive Maps (FCMs), which allow estimating bounds
for the activation value of each neuron and analyzing the covering and proximity of feasible activation spaces.
The main theoretical findings suggest that the state space of any FCM model equipped with transfer F -
functions shrinks infinitely with no guarantee for the FCM to converge to a fixed point but to its limit state
space. This result, in conjunction with the covering and proximity values of FCM-based models, helps to
understand their poor performance when solving complex simulation problems.

Introduction

Fuzzy Cognitive Maps (FCMs) [1] are recurrent neu-
ral networks for modeling complex systems. Existing
theoretical studies on FCMs are mainly devoted to con-
vergence issues, commonly covering the existence and
uniqueness of fixed points [2, 3]. Other results reported
in [4, 5, 6] address the convergence of FCM models used
in prediction/classification scenarios.

Concerning the theoretical analysis of FCMs’ dy-
namics, we summarize our paper Unveiling the Dy-
namic Behavior of Fuzzy Cognitive Maps [7]. First,
we introduce several definitions and theorems that al-
low studying the dynamic behavior of FCMs equipped
with monotonically increasing functions bounded into
non-negative intervals. The strong version of our the-
orem proves that the state space of an FCM shrinks
infinitely and converges to a so-called limit state space.
This allows envisaging the FCM model’s behavior be-
fore the inference stage. As a second contribution, we
explore the covering and proximity of feasible activa-
tion spaces, which help explain why FCMs sometimes
perform poorly when solving complex prediction prob-
lems. In other words, we should not expect impressive
prediction rates when the model has low covering val-
ues, as the FCM feasible state space is small.

Shrink Functions and State Space Estimation in
FCM-based Models

We define F as the set of all monotonically increasing
functions bounded into non-negative intervals. Also,
let fi ∈ F be the transfer function used in the activa-
tion process of neuron Ci in the FCM. In [7], we refer
to an F -function as any function belonging to F .

Let HW and HT be functions that take an FCM-
based model M and a feasible state space at the t-th
iteration S(t) for this map and return a feasible state
space at the (t+1)-th iteration S(t+1) for the same map.
While HW uses the weight matrix W ofM to calculate
a feasible state space for the (t + 1)-th iteration, HT

uses the FCM’s topology only. Based upon estimated

bounds for the successive activation values and from
the monotonically increasing property of fi ∈ F , we
assert that over the same FCM, these two shrink func-
tions transform feasible state spaces into state spaces
which are also feasible.

To show that FCMs are not completely unpre-
dictable, we propose two theorems as the pillars of
our state-space estimation: the Weak Shrinking State
Space and the Strong Shrinking State Space. The for-
mer asserts that the state spaces shrink from one itera-
tion to the next one, although it is possible that S(t) =
S(t+1), which would imply that S(t) = S(t+k) ∀k ∈ N.
So, the state spaces may not shrink forever. The latter
only varies in the sense that transfer functions are now
bounded into open intervals. This means that the state
space bounds are never reachable and hence, the state
spaces will shrink forever and they will have a limit.
The limit state space of M is S(∞) = limt→∞ S(t),
when state spaces are iteratively calculated using either
shrink function HT or HW . According to simulations,
S(∞) often contains a single point.

Covering and Proximity of FCM Models

In this section, we discuss two evaluation measures that
help understand the properties of FCM-based systems.
The covering quantifies the proportion of the induced
activation space that is reachable by the neuron’s ac-
tivation values and the proximity measures the mean
relative distance of neuron’s activation values to the
feasible activation spaces.

Small covering values are evidence of the reduced
representativeness of induced activation space, but
sometimes we desire high covering values to represent
the most diverse sets of outputs. As illustrated, such
measures have a straightforward connection with the
Strong Shrinking State Space Theorem. More impor-
tantly, they help explain why FCMs sometimes per-
form poorly when applied to prediction problems that
demand high accuracy.
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Experimental Scenarios

For experimentation purposes, we generated 400 FCM-
based models (200 stable and 200 unstable) with varied
properties according to the number of neurons (5 to
30), weights ([−1, 1] interval) and connectivity or per-
centage of relationships (10%, 20%, . . . , 100%). The
simulations reported more valuable results in the pres-
ence of stable FCM models and when the knowledge
comprised into the weight set is available. Therefore,
Figures 1, 2 and 3 correspond to this situation.

Figure 1 depicts the covering values resulting for this
scenario. Higher connectivity values and higher num-
ber of map neurons have a considerable influence on
attaining higher covering values.

Figure 1: Axes X, Y and Z respectively refer to the
number of neurons, connectivity and covering values.

A zero covering value is a computational evidence
of fixed-point attractors for every one of these FCM
models. According to Figure 2, at least 81 FCM model
will always converge to a fixed-point attractor regard-
less of the initial stimulus. Moreover, in Figure 3 we
can observe that nearly half of the proximity values are
exactly zero and then, almost surely, 90 FCM models
converge to a fixed-point attractor.

Figure 2: Distribution of covering values.

Figure 3: Distribution of proximity values.

Concluding Remarks

Our research in [7] goes a step beyond the study of
fixed-point attractors, since we analyze the dynami-
cal behavior of FCM-based models from the perspec-
tive of their state spaces. The Strong Shrinking State
Space Theorem enunciated in this paper ensures that
the feasible state space of the targeted FCMs shrinks
infinitely, yet the system converges to its limit state
space. As shown in the experiments, approximating an
FCM’s limit state space is useful to predict fixed-point
attractors. Likewise, we illustrated that the covering of
feasible activation spaces is often poor and irregular for
FCMs with reduced network topologies. This knowl-
edge could be injected into the learning procedure in
order to improve network’s performance.

Notes

a. Email: lcperez@uclv.cu
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We have proposed a hybrid Fuzzy Cognitive Map-based model that incorporates static expert knowledge and
information automatically inferred from the data. The paper introduces a fast and deterministic algorithm to
construct such a model and a post-optimization procedure to fine-tune the resulting architecture. Simulations
showed the superiority of our proposal in problems devoted to modeling complex systems.

Contribution overview

Fuzzy Cognitive Maps (FCMs) belong to the family
of cognitive semantic models. They are represented as
directed weighted graphs in which vertices are concepts
(knowledge granules) and arcs correspond to relations
between them. FCMs are used to visualize, model, and
simulate the behavior of systems.

In our new paper [1] the focus is on an FCM-based
model for simulating dynamic systems. In such a sys-
tem, we often have several input variables that influ-
ence the values of the output variables. In this paper,
a new hybrid approach for designing FCMs simulat-
ing such a system is presented. The proposed approach
combines the ability to integrate expert knowledge into
the map architecture with elements of automatic model
learning from historical data. In practice, in the pro-
posed model we can incorporate information about the
weights between input variables given by experts, and
the remaining weights are learned automatically. The
use of the term “hybrid” refers in our case to the possi-
bility of integrating expert knowledge about input vari-
ables into a model whose other parts are learned from
the data. The specific research goals and our novel con-
tributions can be summarized as follows:

� We developed a new method for constructing cog-
nitive maps, in which we incorporate both static
expert knowledge and knowledge extracted from
the data in the learning procedure.

� We introduced a new very fast, deterministic way
of learning model weights.

� We introduced a post-optimization approach for
eliminating irrelevant weights and correcting the
model to preserve the accuracy.

The new method

Figure 1 shows the proposed architecture with three
inputs (x1, x2, x3) and three outputs (y1, y2, y3).

c1

c2

c3

d1

d2

d3

x1

x2

x3

y1

y2

y3

Figure 1: FCM-based model with three input neurons
(c1, c2, c3) and three output neurons (d1, d2, d3).

The reasoning process is given in below,

a
(t+1)
ki = fi

(∑P

j=1
wjia

(t)
kj

)
, i 6= j (1)

where P is the number of nodes in the network, k is
the input activation vector index, wji is the weight con-
necting cj with ci, and fi(·) is the transfer function. We
adopted a simplified variant of the sigmoid function,
which is depicted below,

fi(x) = li +
ui − li

(1 + e−λi(x−hi))
(2)

such that λi > 0 and hi ∈ R are parameters that define
the shape of the sigmoid function.

The initial activation values a(0)1 , a(0)2 and a
(0)
3 for

input neurons correspond to the problem variables x1,
x2 and x3, respectively. Let us use N to note the num-
ber of input neurons C = {c1, . . . , cN} and M to note
the number of output neurons D = {d1, . . . , dM}. The
weight matrix W is composed of two sub-matrices W I

and WO. The first one contains the connections among
the input neurons. W I should ideally be defined by do-
main experts and it will not be modified during the
learning phase. Sub-matrix WO contains the weights
between the input and the output nodes. This matrix
will be learned automatically.
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The inverse learning method

In the paper, we developed a learning method to com-
pute WO, the sub-matrix that contains the weights be-
tween the input and the output nodes.

Assume that [X,Y ] is a training dataset where X =
[xij ], i = 1, . . . ,K, j = 1, . . . , N . K is the number of
input instances, each instance is described with N in-
put variables, xij ∈ [0, 1]. Y = [yij ], i = 1, . . . ,K, j =
1, . . . ,M is a matrix containing the true values of the
M output variables for each one of the K instances.

The first step toward computing the WO matrix is
to capture the system semantics with the use of input
and the weight matrix W I . Thus, let Ψ(T )(X) denote
an N ×K matrix after performing T iterations of the
FCM inference process on the input matrix X, that is
Ψ(T )(X) = [a(T )ij ], i = 1, . . . ,K, j = 1, . . . , N .

The second learning step computes WO by using the
proposed pseudoinverse learning rule,

WO =
(
Ψ(T )(X)

)‡
F−
(
Y
)

(3)

where (·)‡ represents the Moore-Penrose (MP) inverse
of a given matrix, and

F−
(
Y
)

=




f−1 (y11) . . . f−i (y1i) . . . f−M (y1M )
...

. . .
. . .

. . .
...

f−1 (yk1)
. . . f−i (yki)

. . . f−M (ykM )
...

. . .
. . .

. . .
...

f−1 (yK1) . . . f−i (yKi) . . . f−M (yKM )




is a K×M matrix containing the inverse of the transfer
functions attached to output neurons:

f−1i (y) =
− ln (−1− y) + hiλi

λi
. (4)

We use an orthogonal projection to obtain the MP
inverse. If a matrixH has linearly independent columns
(H>H is nonsingular), then H‡ = (H>H)−H>. In
contrast, if H has linearly independent rows (HH> is
nonsingular), then H‡ = H>(H>H)−. The former is
a left inverse because H‡H = I, while the latter is
a right inverse because HH‡ = I.

To overcome the issue of weights that lie outside
of the desired [−1, 1] interval, in the paper, we pro-
posed a post-training weight normalization method to
ensure that wji ∈ [−1, 1]. What is more, we proposed a
method for superfluous weights elimination. After this
step, the procedure provides the means for calibrating
the weights to be retained.

Numerical simulations

In the paper, we have conducted several simulations us-
ing 35 datasets. We compared the efficiency of the new
method with well-known population-based optimizers:

Global-best Particle Swarm Optimization, Real-Coded
Genetic Algorithm, and Differential Evolution. Figure
2 shows the box-plots associated with Mean Squared
Error (MSE) for each optimization model after being
tested on datasets used for comparison. The results
confirmed that the MP inverse learning method is out-
performs the remaining optimization approaches when
it comes to the prediction error.

0.08510.08510.08510.08510.08510.08510.08510.08510.08510.08510.08510.08510.08510.08510.08510.08510.08510.08510.08510.08510.08510.08510.08510.08510.08510.08510.08510.08510.08510.08510.08510.08510.08510.08510.0851 0.08310.08310.08310.08310.08310.08310.08310.08310.08310.08310.08310.08310.08310.08310.08310.08310.08310.08310.08310.08310.08310.08310.08310.08310.08310.08310.08310.08310.08310.08310.08310.08310.08310.08310.0831
0.07330.07330.07330.07330.07330.07330.07330.07330.07330.07330.07330.07330.07330.07330.07330.07330.07330.07330.07330.07330.07330.07330.07330.07330.07330.07330.07330.07330.07330.07330.07330.07330.07330.07330.0733

0.05870.05870.05870.05870.05870.05870.05870.05870.05870.05870.05870.05870.05870.05870.05870.05870.05870.05870.05870.05870.05870.05870.05870.05870.05870.05870.05870.05870.05870.05870.05870.05870.05870.05870.0587

0.00

0.05

0.10

0.15

0.20

0.25

PSO RCGA DE MP

Figure 2: MSE reported by each optimization model
across the 35 datasets used for simulation.

The training time of the proposed MP learning rule is
significantly smaller when compared with the ones at-
tached to state-of-the-art population-based optimizers.
The average processing time of tested algorithms was
as follows: Particle Swarm Optimization 4.951s, Real-
Coded Genetic Algorithm 5.509s, Differential Evolu-
tion 12.964s. The new method took on average 0.003s.

Concluding remarks

The new method based on the Moore-Penrose pseu-
doinverse is fast and deterministic. Both those qual-
ities are rarely seen together in the domain of FCM
learning. The numerical simulations have shown that
our system is able to significantly outperform state-of-
the-art population-based algorithms in terms of both
simulation error and training time.

*
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