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SU(2)-Structure & Heterotic String Compactification
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We briefly discuss SU(2)-structure 6-manifolds, their role in the compactification of the heterotic string and
the resulting gauged supergravity at low energies [1].

ageOmetrhtos·mhdeis·eisitO

String Theory replaces the idea of point-like elemen-
tary particles with that of tiny one-dimensional ob-
jects, a.k.a. strings (duh!), and attempts to describe
their propagation and interaction by consistently ap-
plying relativistic and quantum principles. The result-
ing spin-2 vibrational state is readily identified as the
graviton, and therefore String Theory is a natural can-
didate for a theory of quantum gravity.

Unfortunately, consistency of the theory requires a
number of extra spatial dimensions. The supersym-
metric string, for example, requires a ten-dimensional
space-time. One solution to the discrepancy with the
perceived four-dimensional world is to consider the ex-
tra six dimensions to be compactified, i.e. forming a
very small, compact ‘internal’ manifold Y over every
four-dimensional point.

The effective action of the superstring in four dimen-
sions at low energiesa, obtained by integrating out the
six extra dimensions, depends of course on the math-
ematical properties of Y . Since supersymmetry seems
to solve a number of issues also at low energies, it is
desirable for at least part of the 10-dimensional su-
persymmetry to be preserved by the compactification
process. This is achieved by requiring the existence of
one or more globally-defined spinors on Y , which in
turn implies the reduction of the structure group of Y
to a proper subgroup G of SO(6).b

The existence of two globally defined, linearly inde-
pendent spinors η1 and η2 on Y implies SU(2)-structure
and, for the heterotic string, leads to N = 2 super-
gravity in 4 dimensions. If, moreover, these spinors are
covariantly constant with respect to the Levi-Civita
connection, then Y has SU(2)-holonomy and therefore
Y = K3 × T 2, i.e. a product of a complex K3 surface
and a torus.

SU(2)-holonomy case

The existence of such a pair of spinors, which can be
chosen to satisfy the orthonormality condition η̄iηj =
δij , is equivalent to the existence of a triplet of self-
dual two-forms Jx = Jxabdy

a ∧ dyb and a pair of real
one-forms vi = viadya on Y , as can be seen from the
following relations,

J1
ab + iJ2

ab = iη̄2γabη1,

J3
ab = − i

2 (η̄1γabη1 + η̄2γabη2),

v1a + iv2a = η̄c2γaη1,

(1)

where γa are the six SO(6) gamma-matrices and γab is
the antisymmetrised product 1

2 (γaγb − γbγa).
For K3× T 2, the fact that the spinors ηi are covari-

antly constant with respect to the Levi-Civita connec-
tion implies that Jx and vi as defined in Eq. (1) are
closed: dJx = dvi = 0. In this case, Jx are the three
self-dual closed forms defining the hyperkähler struc-
ture on K3, and vi = dzi, with zi the coordinates of
T 2 = S1 × S1.

The bosonic sector of the heterotic string consists of
the ten-dimensional metric, the Neveu–Schwarz two-
form B2 and the E8 × E8 Yang-Mills field A1 . An
Ansatz for the Kaluza-Klein reduction on K3 × T 2 to
four dimensions xµ can be written as follows,

ds2 = gµνdxµdxν + gmndymdyn + gijE iEj ,
B2 = 1

2Bµνdxµ ∧ dxν +BiµE i ∧ dxµ+

+ 1
2BijE

i ∧ Ej + bAω
A,

AI1 = AIµdxµ +AIi E i,

(2)

where E i = dzi − V iµdxµ, ym and gmn are the coordi-

nates and metric on K3, and ωA are the 22 harmonic
two-forms on K3. The original E8 ×E8 gauge symme-
try will be generically broken to an Abelian subgroup
U(1)ng for some ng, so I = 1, . . . , ng.

Carrying out the Kaluza-Klein reduction with this
Ansatz leads to N = 2 supergravity with fields or-
ganized in one gravity multiplet, nv = 3 + ng vector
multiplets and 20 hypermultiplets.c The bosonic con-
tent is distributed as follows: the metric gµν sits of
course in the gravity multiplet; the 4 + ng vectors V iµ,

Biµ and AIµ become the vectors in the nv vector multi-
plets, plus the graviphoton in the gravity multiplet; the
three scalars in the symmetric gij , plus the one scalar
in the antisymmetric Bij , plus the dilaton φ, plus the
scalar dual to the two-form Bµν (the so-called axion
a), plus the 2ng scalars AIi , become the nv complex
scalars in the vector multiplets; and finally, 58 scalars
from the deformations of the K3 metric gmn, plus the
22 scalars bA, become the 80 real scalars sitting in the
20 hypermultiplets.

The hypermultiplet scalars can be organized in a
SO(4, 20) matrixM, and after tedious calculations the
Lagrangian for these fields can be shown to take the
following form,

L = 1
8 tr(∂µM∂µM). (3)
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In particular, no potential is generated for these or
any of the scalar fields, which is seen as a problem and
part of the motivation for considering a more general
type of background.

General SU(2)-structure backgrounds

For a generic SU(2)-structure manifold Y , the spinors
ηi are covariantly constant with respect to a connection
with non-vanishing torsion. In this case, the forms Jx

and vi as defined in Eq. (1) fail to be closed.
The manifold Y cannot be written as a Cartesian

product in this general case; however, the existence of
the pair of one-forms vi still allows for the definition of
an almost product structure Πa

b = 2gbcviav
i
c − δba on Y

satisfying Πa
bΠb

c = δca. This structure splits the tan-
gent space over every point y of Y into two- and four-
dimensional subspaces, TyY = V2 ⊕W4. The subspace
V2 is spanned by the vectors dual to the one-forms vi,
and the orthonormality of the spinors implies ιviJ

x,
i.e. the two-forms Jx must have legs only along W4.

Due to this result, the most general departure from
closure for the two- and one-forms on Y can be
parametrized in the following way,d

dvi = θiv1 ∧ v2, dωA = TAiBv
i ∧ ωB , (4)

where the number of two-forms ωA is generically n.
Vanishing torsion means θi = TAiB = 0, Y = K3 × T 2

and n = 22.
Nilpotency of the d-operator, together with Stokes’

theorem
∫
Y

d(vi ∧ωA ∧ωB) = 0, leads to the following
constraints on the values of θi and TAiB ,

TAiB = θiδ
A
B + ΘA

iB , [Θ1,Θ2] = θiΘi, (5)

where θi ≡ − 1
2εijθ

j , with εij = −εji and ε12 = 1. Also,
the two matrices (Θi)

A
B ≡ ΘA

iB are in so(3, n− 3), the
algebra of SO(3, n−3), as there must be three self-dual
and n− 3 anti-self-dual two-forms.

K3 fibration over a torus

A case with θi = 0 can be constructed as a fiber bundle
with fiber K3 over a torus T 2. The matrices Θi can be
any two mutually commuting matrices in so(3, 19). The
one-forms are vi = dzi, as in the SU(2)-holonomy case,
and the n = 22 two-forms ωA are closed on every K3
fiber, but depend on zi in the following way,

ωA(z) = (exp ziΘi)
A
Bω

B(0). (6)

Going once around each torus coordinate (zi ∼ zi+1),
the set of two-forms ωA needs to come back to itself
up to some discrete monodromy expT i in SO(3, 19,Z),
which is indeed a symmetry of the string theory.

Performing the dimensional reduction on this back-
ground with the Ansatz in Eq. (2) produces a gauged
N = 2 supergravity with the same field content. The
hypermultiplet scalars become charged with respect to

the Kaluza-Klein vectors V iµ, and the Lagrangian in
Eq. (3) becomes

L = 1
8 tr(DµMDµM)− 1

8eφgijtr([M, Ti][M, Tj ]) (7)

with covariant derivatives

DµM = ∂µM− V iµ[M, Ti], (8)

and the 24× 24 matrix Ti defined as

Ti = diag(0, 0,Θi) ∈ so(4, 20). (9)

As can be seen from Eq. (7), a potential is generated
for the hypermultiplet scalars. The scalars in vector
multiplets remain neutral.

K3 fibration over a ‘twisted torus’

The case with θi 6= 0 can be thought of as a K3 fi-
bration over a ‘twisted torus’. Though in all rigor a
‘twisted torus’ does not exist as a global manifold, the
construction makes sense if we consider it in two steps:
a reduction to 5 dimensions on K3×S1 plus a further,
Scherk-Schwarz-type compactification on another cir-
cle S1.

The embedding into string theory remains problem-
atic in this case, as the twist after going once around
the circle is not in the U-duality group. Still, as far
as the effective field theory is concerned, the result is
consistent with a gauged N = 2 supergravity.

Eqs. (7) and (8) for the hypermultiplet sector still
apply in this case, with

Ti = diag(θi,−θi,Θi) ∈ so(4, 20). (10)

The biggest difference is that the scalars in the vector
multiplet sector become charged as well with respect
to some linear combinations of the vectors V iµ and Biµ,
and a potential is also generated in this sector.

The full equations for the bosonic part of the effective
action are too big to fit here, but can be found in [1],
together with all the necessary references.

Notes

a. ‘Low’ with respect to the Planck energy
√

~c5/G, but still
quite high with respect to energies accessible to modern
particle accelerators.

b. This means that one can choose orthonormal bases on an
open cover of Y such that all transition functions take val-
ues in G instead of the generic SO(6) rotation.

c. There are additional hypermultiplets whose number and
structure depend on the details of the breaking of the
E8 × E8 gauge symmetry, but these will be ignored here.

d. There are no other one- or three-forms if one rules out massive
gravitino multiplets.

References

[1] J. Louis, D. Martinez-Pedrera and A. Micu, JHEP
09 (2009) 012 – arxiv.org/abs/0907.3799

4

arxiv.org/abs/0907.3799

	SU(2)-holonomy case
	General SU(2)-structure backgrounds
	K3 fibration over a torus
	K3 fibration over a `twisted torus'

