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In this work we study stable configurations of magnetized strange stars using an axially symmetric metric in
spherical coordinates and calculate its observables (masses, radii and mass quadrupole moment) [1].

Strange Stars (SSs) are hypothetical stars formed by
strange quark matter (SQM), which is speculated to
be the true ground state of strongly interacting mat-
ter (Bodmer-Witten’s conjecture) [4, 5]. This type of
stars describe compact objects (COs) with maximum
masses around 1.5 M⊙ and radius of 4–8 km that could
account for some observations of cold, dense, and small
compact objects that do not fit the standard neutron
stars (NSs) models [2]. There are many microscopic
models proposed for SSs, all of which differ by how the
strong interaction is described and what sort of SQM
phases are considered within the star. It’s usually de-
scribe trough phenomenological models that mimic the
main features of Quantum Chromodynamics (QCD)
[6]. In particular, we used the MIT Bag model where
quarks are considered as quasifree particles confined
into a “bag” and having fixed masses [7]. This model
reproduces confinement and asymptotic freedom with
the use of only one external parameter, the bag energy
BBag.

A well known feature of COs are their extreme super-
ficial and inner magnetic fields, which are estimated to
be as high as 5×1018 G in the case of NSs. In this case,
the energy-momentum tensor of matter is anisotropic
and leads to nonspherical stars [9]. We derived and
used a set of TOV-like structure equations from an ax-
ially symmetric metric in spherical coordinates, the γ
equations [9], that allow us to describe spheroidal ob-
jects as long as their shape is nearly spherical.

In this work we present a review of previous stud-
ies where we study the magnetic field effects on the
stability of the SQM and the spheroidal stellar con-
figurations, as well as its observables: mass, radii and
the mass quadrupole moment. In addition we compare
them with those of spherical strange stars and candi-
dates to be and calculate other observables (eccentric-
ity, moment of inertia and gravitational redshift) that
can be found in [1, 3].

Equation of State of Magnetized Strange Stars

We consider SSs composed of SQM and electrons under
the action of a uniform and constant magnetic field ori-
ented in the z direction, B = (0, 0,B). As pointed out
before, we use the phenomenological MIT bag model

[7] and in this case, we fix the quark masses and charges
to mu = 2.16 MeV, md = 4.67 MeV, ms = 93 MeV,
me = 0.51 MeV, eu = 2

3e, and es = ed = − 1
3e [8].

After performing an analysis of the stability of magne-
tized SQM [1], we will use two fixed values of the BBag

constant, 45 MeV/fm3 and 75 MeV/fm3[1].
For a magnetized gas of quarks and electrons, the

equations of state are obtained from the thermodynam-
ical potential [6] and the stellar equilibrium conditions

Ωf (B,µ, T ) = −efdfB

β
×

×
∫ ∞

−∞

dp3
4π2
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l=0

gl
∑
p4

ln[(p4 + iµ)2 + ε2lf ],

where f = e, u, d, s and

ε2lf =
√
p23 + 2|efB|l +m2

f ,

characterizes the spectrum of a charged fermion in a
magnetic field. We have designated the Landau levels
with l, df is the flavor degenerative factor de = 1,
du,d,s = 3 and gl = 2 − δl0 takes into account the
spin degeneracy of fermions for l ̸= 0. In addition,
µf , ef and mf are the chemical potential, charge and
mass of each particle, respectively. The EoS for the
magnetized Strange Star formed by a gas of u, d, s
quarks and electrons, taking into account the MIT Bag
model, take the form

E(B,µ, 0) =
∑
f

[
Ωf (B,µ, 0) + µfNf (B,µ, 0)

]
+

+ Bbag +B2/8π,

P∥(B,µ, 0) = −
∑
f

Ωf (B,µ, 0)− Bbag −B2/8π,

P⊥(B,µ, 0) = −
∑
f

[
Ωf (B,µ, 0) +BMf (B,µ, 0)

]
−

− Bbag +B2/8π.

At higher values of the magnetic field, the difference be-
tween the perpendicular and parallel pressures is more
appreciable. These effects on the EoS will be reflected
in the macroscopic structure of the star, as we will see
in the next section.
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Masses and radii

The axial symmetry imposed in the star by the mag-
netic field is irreconcilable with the spherical symme-
try of standard Tolman-Oppenheimer-Volkoff (TOV)
equations. Consequently, it is desirable to use of ax-
isymmetric metrics if one wishes to describe the struc-
ture of magnetized COs (see Ref. [9] and references
therein). Here, we follow and use a set of axisymmetric
structure equations derived from the so-called γ met-
ric [9], where γ = z/r accounts for the deformation of
the matter source with respect to the spherical shape
and parametrizes the polar radius z in terms of the
equatorial radius r.

ds2 = −
[
1− 2Gm(r)

r

]γ
dt2 +

[
1− 2Gm(r)

r

]−γ

dr2 +

+ r2 sin2 θdϕ2 + r2dθ2,

Starting from this metric and considering the
anisotropic energy-momentum tensor of magnetized
matter, the structure equations (1) are obtained [9].
This system of equations describe the variation of the
mass and the pressures with the spatial coordinate r
for an anisotropic axially symmetric CO as long as
the parameter γ is close to one (See [9] and references
therein).
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(E∥ + E⊥)

2
γ (1)

dP∥

dz
=

1

γ

dP∥

dr

= −
(E∥ + P∥)

[
r
2 + 4πr3P∥ − r

2

(
1− 2M

r

)γ]
γr2

(
1− 2M

r

)γ
dP⊥

dr
= −

(E⊥ + P⊥)
[
r
2 + 4πr3P⊥ − r

2

(
1− 2M

r

)γ]
r2

(
1− 2M

r

)γ .

In Ref. [9] we proposed the ansatz γ = P∥c
/P⊥c

,
which connects the geometry of the system with the
anisotropy produced by the magnetic field. More de-
tails about the ansatz and the resolution of γ-equations
can be found in [9].
In Figure 1 we show the solutions of γ-equations for

several values of the magnetic field. They are compared
with the non-magnetized case and with the TOV so-
lutions considering the pairs (E, P∥) and (E, P⊥) as
independent EoS. In the case of TOV solutions, using
one EoS or the other leads to different mass-radius re-
lations, whose differences increase with the magnetic
field. For a given energy density range, a higher pres-
sure implies bigger and massive stars. Also, for a fixed
value of the magnetic field, the difference in the stars
size obtained with the pairs (E, P∥) and (E, P⊥), is
larger for heavier stars. This suggest that more mas-
sive stars will have a greater deformation. Unlike TOV
equations, γ-equations allow us to model the star as a
spheroidal with an equatorial radius R and a polar ra-

dius Z. So, in Figure 1 theM−R andM−Z curves cor-
respond to a unique sequence of stars, while theM−R⊥
and theM−R∥ curves stand for two different sequences
with (E, P⊥) and EoS (E, P∥), respectively. The low
and median bands correspond to objects PSR J1614-
2230 and PSR J0348 + 0432 with M = 1.97±0.04 M⊙
[10] andM = 2.01±0.04 M⊙ [11]. The upper band rep-
resents the new result of 2.14+0.10

−0.09 M⊙ for the mass of
the pulsar MSP J0740+6620 to a confidence interval of
68.3% presented in [12]. The range of allowable param-
eters is further constrained by recent mass-radius esti-
mates extracted from NICER data, M = 1.44+0.15

−0.14 M⊙
with R = 13.02+1.24

−1.06 km [13], M = 1.34+0.15
−0.16 M⊙ with

R = 12.71+1.14
−1.19 km [14] and R1.44 > 10.7 km [15].

These estimates are indicated by the black dots with
their corresponding error bars.
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Figure 1: Solutions for spheroidal configurations in
comparison with the non-magnetized configuration at
B = 1017 G and B = 5×1017 G, where Rm represents
the mean radius defined such that the sphere it de-
termines is equal to the surface area of the spheroidal
star A = 2πR

[
R+ Z

ε
arcsin ε

]
. Gravitational stabil-

ity requirement (I). Finite pressure requirement (II).
Causality requirement (III). Rotational stability re-
quirement (IV).

The stellar configurations obtained are oblate ob-
jects (R > Z), as expected since P⊥ > P∥ [1]. On
the contrary of what happens with TOV solutions, for
which the difference between R⊥ and R∥ increases with
the mass, the deformation of our spheroidal stars—the
differences between the equatorial and the polar radius-
decreases with the mass. Hence, the importance of
building a model, as the one we present, that takes
into account both pressures simultaneously.

Mass quadrupole moment

The quadrupole mass moment due to the magnetic
field is directly related to the amplitude of the OGs
[1], since they are only emitted in situations where
a mass asymmetry is generated that gives rise to a
quadrupole moment, either as a consequence of rota-
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tion or the magnetic field. Therefore, spherical stars
do not have a quadrupole momentum and cannot gen-
erate OGs. In contrast, magnetized stars, being de-
formed, have non-zero quadrupole moments that can
contribute to the emission of GWs. In the framework
of our structure equations, the quadrupole moment of
the SSs is Q = γ

3M
3(1 − γ2) (See [9] and references

therein), where γ = 1 implies Q = 0, which corre-
sponds to the spherical case. Figure 2 shows this mag-
nitude as a function of the star’s mass. The oscillations
in the curves are an effect of the presence of the sum by
the Landau levels in the EoS. Q diminishes with BBag

and its maximum is reached for stars in the region of
intermediate mass and deformation. This behavior is
due to the simultaneous dependence of Q on M and
γ, which in particular is determined by the fact that γ
depends on the EoS and thus therefore varies between
stars. This result is different from the one obtained in
Ref. [16], where equations of structure derived from the
γ metric were solved by taking γ as a free parameter.
In this case the highest values of the quadrupole are
reached for the most massive stars. Therefore, con-
necting γ to the physics of the problem has a direct
impact on the observables, and can serve as a way to
discriminate between models.
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Figure 2: Mass quadrupole moment Q as a function
of mass M at B = 1017 G, B = 5× 1017 G for Bbag =
45 MeV/fm3 and Bbag = 75 MeV/fm3 [1].

Conclusions

In our model, less massive stars suffer bigger deforma-
tions in contrast with the results from TOV solutions
for the perpendicular and the parallel pressure inde-
pendently. The stable stellar sequences obtained are
in the region allowed by the theoretical constraints for
mass and radius values, and are close to the observa-
tional values for masses and radii of different pulsars.
This supports the physical plausibility of our model of
magnetized strange stars. Since the magnetized SS is
deformed, it has a quadrupole momentum, the value of

which is maximum in the intermediate regions of mass
and radius, so stars in these regions are expected to
produce the most intense GWs. The mass quadrupole
moment depends explicitly on the deformation through
the EoS because γ appears on their mathematical ex-
pression. This reveals the model dependency of the
results and highlights how important is the construc-
tion of even more realistic models.

Notes

a. Email: samantha@icimaf.cu
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