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Gershgorin radii as natural bounds for the correlation energies
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We investigate yet another direct link between linear algebra and electronic structure theory by exploring the
usefulness of the Gershgorin theorem in the estimation of the correlation energies of many-particle systems.

The calculation of the eigenvalues of arbitrary ma-
trices is a routine activity in today’s science. However,
it is a fundamentally complex problem and, in most
cases, a very demanding one from the computational
point of view. Therefore, to obtain good estimates of
the eigenvalues is of vital importance.

In this work we investigate another direct link be-
tween linear algebra and electronic structure theory
by exploring the usefulness of the Gershgorin theo-
rem [1] in the estimation of the correlation energies
Ec of many-particle systems. We focus on a partic-
ular class of systems, two-dimensional quantum dots
(2DQDs), and perform extensive numerical calcula-
tions. We find that, indeed, the Gershgorin radii RG

constitute natural bounds for the correlation energies
though – unfortunately – very loose bounds.

The Gershgorin theorem

The most crude estimate of the eigenvalues of a ma-
trix A is given by the inequality ρ(A) ≤ ||A||, where
ρ(A) = max |λ| with λ ∈ σ(A), is known as the spec-
tral radius of A. This estimate, although useful in
many cases, is not very accurate in terms of the lo-
cation of the eigenvalues of A. Gersgorin’s theorem
goes further in this direction. Let us recall:

Theorem 1 Let A = ai,j be an arbitrary n×n matrix
and let us define the disks Di by Di = {z ∈ C : |z −
ai,i| ≤ ri}, where ri =

∑
i 6=j |ai,j | with 1 ≤ i ≤ n.

Then

λ ∈
n⋃
i=1

Di (1)

for every eigenvalue λ of A. Furthermore, if S is the
union set of m disks which are disjoint from the other
n−m disks, then S contains exactly m eigenvalues of
A.

Now, let us analyze the structure of the Full Configu-
ration Interaction (FCI) matrix but taking into account
the definition of the correlation energy Ec = Egs−EHF.
That is, the difference between the total ground-state
energy and the Hartree-Fock energy. Fig. 1 shows its
general structure. Note that the matrix is Hermitian,
therefore only the upper triangle is shown.

It is easy to realize that if (i) we use a Hartree-Fock
basis, |Φ0〉 = |HF〉, and (ii) we apply the Gershgorin
Theorem to the first eigenvalue of the FCI matrix (See
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DĤD

∫
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Figure 1: Structure of the full-CI matrix. Singly, dou-
bly, triply, and highly excited determinants are de-
noted as |S〉, |D〉, |T 〉, etc.

Fig. 1), then we can associate the correlation energy
Ec to the first Gershgorin radius. That is

|Ec| <
Dim(D)∑
j=1

D1,j , (2)

where we use the shorthand notation D and Dim(D)
to denote the submatrix

∫
Φ0ĤD and its dimension,

respectively. The sum in Eq. (2) runs over all elements
of the submatrix D. Let us recall that, in a scheme of
FCI, there is no mixture of HF with excitations higher
than |D〉, which means that the higher excitation sec-
tors (|T 〉, |Q〉, etc), contain only null elements.

According to Eq. (2), the (first) Gershgorin radius is
a natural (mathematical) bound for the (ground-state)
correlation energy. However, it cannot be said – a priori
– how tight this bound is. Therefore, our next steps are
1) to study how the Gershgorin radii depends on the
perameters defining our system and, 2) to determine
under which conditions – if any – they provide useful
estimates of the correlation energies.

Numerical results

In order to evaluate the quality of the above bounds,
we consider a concrete model system. We compute the
correlation energy and the first Gershgorin radius, RG,
of two-dimensional parabolic quantum dots with dif-
ferent number of electrons and different confinements
strengths. For the calculation of RG, we use our own
implementation of a truncated CI scheme (up to the
singles-and-doubles excitation level) [2].

The starting point is the Hartree-Fock solution of
the problem. Then a basis of functions made up
from (i) the Hartree-Fock state, |HF〉, (ii) one-particle
one-hole (1p1h) excitations, that is |σµ〉 = e†σeµ|HF〉,
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Figure 2: An approximate scaling relation of the ra-
tio Ec/RG as a function of z = βN1/4 (see main text).
The deviations observed for large-N systems are a con-
sequence of the basis truncation at double-excitations
level.

and (iii) two-particle two-hole (2p2h) excitations, i.e.
|σρ, µλ〉 = e†σe

†
ρeµeλ|HF〉; is used in order to diagonal-

ize the Hamiltonian. Note that e(e†) are the annihila-
tion (creation) operators while σ < ρ are single-particle
states above the Fermi level, and µ < λ are states be-
low the Fermi level. The explicit matrix elements are
given in Ref. [2].

We computed values of RG of QDs with N =
2, 6, 12, 20, 30, 42, 56, 72 and 90 electrons, and con-
finement strengths ~ω = 10, 20, 30, 40 and 50 meV.
GaAs parameters for the electron efective mass (m =
0.067 m0) and dielectric constant (ε = 12.8) were used
in the calculations. Notice that all the systems consid-
ered here are closed-shell quantum dots with ground-
state angular momentum and spin quantum numbers
L = S = 0. As a reference, we also compute values
of Ec based on an accurate Variational Monte Carlo
(VMC) approach [3, 4].

We compared the VMC-based reference values of Ec
to the corresponding Gershgorin radii and we found
similar qualitative trends, i.e., in a logarithmic scale,
the values of both Ec and RG show a linear dependence
on the particle number. In the case of RG, we observe
a deviation from the linear behavior in the large-N re-
gion. Such deviations can be explained as the effects of
the truncation of the basis in our CI scheme. The main
difference, however, is quantitative: RG being about
three orders of magnitude larger than the correspond-
ing values of Ec. This numerical difference makes RG

useless in terms of chemical accuracy.
Even though the Gershgorin radii do not constitute

reasonably tight bounds for the correlation energies of
the systems considered, we show that both magnitudes
may be related by some kind of scaling law of the type
reported in previous works [2]. To this end, we assume
a relation of the form

Ec
RG
∼ (~ω)αRNβRfG(z), (3)

where αR and βR are numerical constants, and z =
βN1/4 is the interaction coupling parameter (β ∝
(~ω)−1/2 being the ratio between the Coulomb energy
and the harmonic confinement) [2].

From our numerical data we find that, in a logarith-
mic scale, the scaled ratio Ec/RG is a linear function
of z:

ln

(
Ec/RG
~ωN4/3

)
≈ a ln(z) + b, (4)

where a = 2.55 and b = 0.55 are obtained from a fit
to the small-N systems (see Fig. 2). The expression in
Eq. (4), after some algebra, can be written in a compact
form Ec = K RG, where the coefficient K is a function
of N and ~ω:

K(~ω,N) = eb (~ω)
2−a
2 N

3a−16
12 . (5)

The scaling law shown in Fig. 2 was found “empir-
ically”, and a rigorous proof of this relation is yet to
be found. However, improved values of all numerical
parameters can be achieved by including larger data
sets.

Conclusions

Our results imply that, (i) in the first approximation
the first Gershgorin radius does not provide a tight
enough bound for the correlation energy of 2DQDs,
but (ii) both quantities can be numerically related by
means of scaling law. These conclusions apply only to a
particular class of systems (2DQDs) and the situation
can differ in different systems. This possibility, in our
opinion, is what makes the problem worth exploring:
the promise of finding – with a highly parallelizable
recipe – good estimates of the eigenvalues without diag-
onalising the matrix, even when the so-called chemical
accuracy requires this bounds to be extremely sharp.

Notes
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